Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 83: 129177, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764468

RESUMO

Based on a hit from a high-throughput screen, a series of phenyltetrazole amides was synthesized and assayed for inhibitory potency against DapE from Haemophilus influenzae (HiDapE). The inhibitory potency was modest but confirmed, with the most potent analog containing an aminothiazole moiety displaying an IC50 = 50.2 ± 5.0 µM. Docking reveals a potential binding mode wherein the amide carbonyl bridges both zinc atoms in the active site, and the tetrazole forms key hydrogen bonds with Arg330.


Assuntos
Antibacterianos , Zinco , Antibacterianos/farmacologia , Domínio Catalítico , Ácido Diaminopimélico/química , Ácido Diaminopimélico/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/metabolismo , Zinco/química , Tetrazóis/química
2.
Acta Crystallogr D Struct Biol ; 78(Pt 8): 997-1009, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35916224

RESUMO

Protein crystals grown in microfluidic droplets have been shown to be an effective and robust platform for storage, transport and serial crystallography data collection with a minimal impact on diffraction quality. Single macromolecular microcrystals grown in nanolitre-sized droplets allow the very efficient use of protein samples and can produce large quantities of high-quality samples for data collection. However, there are challenges not only in growing crystals in microfluidic droplets, but also in delivering the droplets into X-ray beams, including the physical arrangement, beamline and timing constraints and ease of use. Here, the crystallization of two human gut microbial hydrolases in microfluidic droplets is described: a sample-transport and data-collection approach that is inexpensive, is convenient, requires small amounts of protein and is forgiving. It is shown that crystals can be grown in 50-500 pl droplets when the crystallization conditions are compatible with the droplet environment. Local and remote data-collection methods are described and it is shown that crystals grown in microfluidics droplets and housed as an emulsion in an Eppendorf tube can be shipped from the US to the UK using a FedEx envelope, and data can be collected successfully. Details of how crystals were delivered to the X-ray beam by depositing an emulsion of droplets onto a silicon fixed-target serial device are provided. After three months of storage at 4°C, the crystals endured and diffracted well, showing only a slight decrease in diffracting power, demonstrating a suitable way to grow crystals, and to store and collect the droplets with crystals for data collection. This sample-delivery and data-collection strategy allows crystal droplets to be shipped and set aside until beamtime is available.


Assuntos
Microfluídica , Proteínas , Cristalização , Cristalografia por Raios X , Coleta de Dados , Emulsões , Humanos
3.
Int J Biol Macromol ; 192: 138-150, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624379

RESUMO

Nucleoside 2'-deoxyribosyltransferases (NDTs) catalyze the cleavage of glycosidic bonds of 2'-deoxynucleosides and the following transfer of the 2'-deoxyribose moiety to acceptor nucleobases. Here, we report the crystal structures and biochemical properties of the first tetrameric NDTs: the type I NDT from the mesophilic bacterium Enterococcus faecalis V583 (EfPDT) and the type II NDT from the bacterium Desulfotalea psychrophila (DpNDT), the first psychrophilic NDT. This novel structural and biochemical data permitted an exhaustive comparative analysis aimed to shed light into the basis of the high global stability of the psychrophilic DpNDT, which has a higher melting temperature than EfPDT (58.5 °C versus 54.4 °C) or other mesophilic NDTs. DpNDT possesses a combination of unusual structural motifs not present neither in EfPDT nor any other NDT that most probably contribute to its global stability, in particular, a large aliphatic isoleucine-leucine-valine (ILV) bundle accompanied by a vicinal disulfide bridge and also an intersubunit disulfide bridge, the first described for an NDT. The functional and structural features of DpNDT do not fit the standard features of psychrophilic enzymes, which lead us to consider the implication of (sub)cellular levels together with the protein level in the adaptation of enzymatic activity to low temperatures.


Assuntos
Proteínas de Bactérias/química , Modelos Moleculares , Pentosiltransferases/química , Conformação Proteica , Multimerização Proteica , Adaptação Fisiológica , Proteínas de Bactérias/isolamento & purificação , Domínio Catalítico , Fenômenos Químicos , Temperatura Baixa , Dissulfetos , Ativação Enzimática , Estabilidade Enzimática , Pentosiltransferases/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Análise Espectral , Termodinâmica
4.
Mol Biol Rep ; 48(8): 6205-6211, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34331182

RESUMO

BACKGROUND: The enzyme that catalyzes the last step in proline synthesis, δ1-pyrroline-5-carboxylate reductase, showed in most cases a distinct preference in vitro for NADPH as the electron donor. METHODS AND RESULTS: A Zymomonas mobilis gene coding for a δ1-pyrroline-5-carboxylate reductase was cloned and heterologously expressed, and the recombinant protein was purified and characterized. The enzyme showed higher affinity to, and higher catalytic rate with NADH, with a specific activity of about 600 nkat (mg protein)-1. The molecular basis of this feature was investigated by analysis of the dinucleotide binding domain in silico. CONCLUSIONS: We postulate that the main determinants of coenzyme preference for P5C reductases are the length and the sequence of the motif A, whereas the overall sequence identity is insufficient to predict it a priori. Results are discussed in view of the obligately fermentative metabolism of this bacterium.


Assuntos
Pirróis/metabolismo , Zymomonas/metabolismo , Catálise , Elétrons , Cinética , NAD/metabolismo , NADP/metabolismo , Oxirredutases/metabolismo , Especificidade por Substrato/fisiologia
5.
Nat Commun ; 12(1): 3440, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103529

RESUMO

The multi-subunit translation initiation factor eIF2B is a control node for protein synthesis. eIF2B activity is canonically modulated through stress-responsive phosphorylation of its substrate eIF2. The eIF2B regulatory subcomplex is evolutionarily related to sugar-metabolizing enzymes, but the biological relevance of this relationship was unknown. To identify natural ligands that might regulate eIF2B, we conduct unbiased binding- and activity-based screens followed by structural studies. We find that sugar phosphates occupy the ancestral catalytic site in the eIF2Bα subunit, promote eIF2B holoenzyme formation and enhance enzymatic activity towards eIF2. A mutant in the eIF2Bα ligand pocket that causes Vanishing White Matter disease fails to engage and is not stimulated by sugar phosphates. These data underscore the importance of allosteric metabolite modulation for proper eIF2B function. We propose that eIF2B evolved to couple nutrient status via sugar phosphate sensing with the rate of protein synthesis, one of the most energetically costly cellular processes.


Assuntos
Fator de Iniciação 2B em Eucariotos/metabolismo , Estresse Fisiológico , Fosfatos Açúcares/metabolismo , Regulação Alostérica , Sítios de Ligação , Sequência Conservada , Microscopia Crioeletrônica , Fator de Iniciação 2B em Eucariotos/química , Fator de Iniciação 2B em Eucariotos/ultraestrutura , Evolução Molecular , Guanosina Difosfato/metabolismo , Células HEK293 , Humanos , Leucoencefalopatias/patologia , Ligantes , Metaboloma , Modelos Moleculares , Mutação/genética , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Especificidade por Substrato , Fosfatos Açúcares/química
6.
Biochemistry ; 60(12): 908-917, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33721990

RESUMO

We report the atomic-resolution (1.3 Å) X-ray crystal structure of an open conformation of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE, EC 3.5.1.18) from Neisseria meningitidis. This structure [Protein Data Bank (PDB) entry 5UEJ] contains two bound sulfate ions in the active site that mimic the binding of the terminal carboxylates of the N-succinyl-l,l-diaminopimelic acid (l,l-SDAP) substrate. We demonstrated inhibition of DapE by sulfate (IC50 = 13.8 ± 2.8 mM). Comparison with other DapE structures in the PDB demonstrates the flexibility of the interdomain connections of this protein. This high-resolution structure was then utilized as the starting point for targeted molecular dynamics experiments revealing the conformational change from the open form to the closed form that occurs when DapE binds l,l-SDAP and cleaves the amide bond. These simulations demonstrated closure from the open to the closed conformation, the change in RMS throughout the closure, and the independence in the movement of the two DapE subunits. This conformational change occurred in two phases with the catalytic domains moving toward the dimerization domains first, followed by a rotation of catalytic domains relative to the dimerization domains. Although there were no targeting forces, the substrate moved closer to the active site and bound more tightly during the closure event.


Assuntos
Amidoidrolases/antagonistas & inibidores , Amidoidrolases/química , Inibidores Enzimáticos/farmacologia , Simulação de Dinâmica Molecular , Sulfatos/farmacologia , Amidoidrolases/metabolismo , Cristalografia por Raios X , Neisseria meningitidis/enzimologia
7.
J Org Chem ; 86(4): 3377-3421, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33544599

RESUMO

Molecular design, synthesis, and biological evaluation of tubulysin analogues, linker-drugs, and antibody-drug conjugates are described. Among the new discoveries reported is the identification of new potent analogues within the tubulysin family that carry a C11 alkyl ether substituent, rather than the usual ester structural motif at that position, a fact that endows the former with higher plasma stability than that of the latter. Also described herein are X-ray crystallographic analysis studies of two tubulin-tubulysin complexes formed within the α/ß interface between two tubulin heterodimers and two highly potent tubulysin analogues, one of which exhibited a different binding mode to the one previously reported for tubulysin M. The X-ray crystallographic analysis-derived new insights into the binding modes of these tubulysin analogues explain their potencies and provide inspiration for further design, synthesis, and biological investigations within this class of antitumor agents. A number of these analogues were conjugated as payloads with appropriate linkers at different sites allowing their attachment onto targeting antibodies for cancer therapies. A number of such antibody-drug conjugates were constructed and tested, both in vivo and in vitro, leading to the identification of at least one promising ADC (Herceptin-LD3), warranting further investigations.


Assuntos
Imunoconjugados , Preparações Farmacêuticas , Imunoconjugados/farmacologia , Relação Estrutura-Atividade , Tubulina (Proteína) , Raios X
8.
Antibiotics (Basel) ; 9(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32933028

RESUMO

Inhibitors of the bacterial enzyme dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE; EC 3.5.1.18) hold promise as antibiotics with a new mechanism of action. Herein we describe the discovery of a new series of indoline sulfonamide DapE inhibitors from a high-throughput screen and the synthesis of a series of analogs. Inhibitory potency was measured by a ninhydrin-based DapE assay recently developed by our group. Molecular docking experiments suggest active site binding with the sulfonamide acting as a zinc-binding group (ZBG).

9.
IUCrJ ; 6(Pt 4): 649-664, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31316809

RESUMO

Tryptophan biosynthesis is one of the most characterized processes in bacteria, in which the enzymes from Salmonella typhimurium and Escherichia coli serve as model systems. Tryptophan synthase (TrpAB) catalyzes the final two steps of tryptophan biosynthesis in plants, fungi and bacteria. This pyridoxal 5'-phosphate (PLP)-dependent enzyme consists of two protein chains, α (TrpA) and ß (TrpB), functioning as a linear αßßα heterotetrameric complex containing two TrpAB units. The reaction has a complicated, multistep mechanism resulting in the ß-replacement of the hydroxyl group of l-serine with an indole moiety. Recent studies have shown that functional TrpAB is required for the survival of pathogenic bacteria in macrophages and for evading host defense. Therefore, TrpAB is a promising target for drug discovery, as its orthologs include enzymes from the important human pathogens Streptococcus pneumoniae, Legionella pneumophila and Francisella tularensis, the causative agents of pneumonia, legionnaires' disease and tularemia, respectively. However, specific biochemical and structural properties of the TrpABs from these organisms have not been investigated. To fill the important phylogenetic gaps in the understanding of TrpABs and to uncover unique features of TrpAB orthologs to spearhead future drug-discovery efforts, the TrpABs from L. pneumophila, F. tularensis and S. pneumoniae have been characterized. In addition to kinetic properties and inhibitor-sensitivity data, structural information gathered using X-ray crystallo-graphy is presented. The enzymes show remarkable structural conservation, but at the same time display local differences in both their catalytic and allosteric sites that may be responsible for the observed differences in catalysis and inhibitor binding. This functional dissimilarity may be exploited in the design of species-specific enzyme inhibitors.

10.
Chem Biol Drug Des ; 93(6): 1197-1206, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30484959

RESUMO

Bisphosphonic acids, which are structural analogs of pyrophosphate, constitute a class of compounds with very high potential for the construction of effective inhibitors of enzymes operating on oligo- and polyphosphates. The bisphosphonate-based methodology was applied for the discovery of inhibitors of two families of polyphosphate kinases (PPK1 and PPK2). Screening of thirty-two structurally diverse bisphosphonic acids and related compounds revealed several micromolar inhibitors of both enzymes. Importantly, selectivity of bisphosphonates could be achieved by application of the appropriate side chain.


Assuntos
Difosfonatos/farmacologia , Inibidores Enzimáticos/farmacologia , Isoenzimas/antagonistas & inibidores , Nucleotídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/antagonistas & inibidores , Polifosfatos/metabolismo
11.
Environ Sci Technol ; 52(21): 12388-12401, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30284819

RESUMO

The continuous growth of global plastics production, including polyesters, has resulted in increasing plastic pollution and subsequent negative environmental impacts. Therefore, enzyme-catalyzed depolymerization of synthetic polyesters as a plastics recycling approach has become a focus of research. In this study, we screened over 200 purified uncharacterized hydrolases from environmental metagenomes and sequenced microbial genomes and identified at least 10 proteins with high hydrolytic activity against synthetic polyesters. These include the metagenomic esterases MGS0156 and GEN0105, which hydrolyzed polylactic acid (PLA), polycaprolactone, as well as bis(benzoyloxyethyl)-terephthalate. With solid PLA as a substrate, both enzymes produced a mixture of lactic acid monomers, dimers, and higher oligomers as products. The crystal structure of MGS0156 was determined at 1.95 Å resolution and revealed a modified α/ß hydrolase fold, with a lid domain and highly hydrophobic active site. Mutational studies of MGS0156 identified the residues critical for hydrolytic activity against both polyester and monoester substrates, with two-times higher polyesterase activity in the MGS0156 L169A mutant protein. Thus, our work identified novel, highly active polyesterases in environmental metagenomes and provided molecular insights into their activity, thereby augmenting our understanding of enzymatic polyester hydrolysis.


Assuntos
Metagenoma , Poliésteres , Esterases , Hidrolases , Hidrólise
12.
Cell Chem Biol ; 25(9): 1075-1085.e4, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-29937405

RESUMO

The enediynes, microbial natural products with extraordinary cytotoxicities, have been translated into clinical drugs. Two self-resistance mechanisms are known in the enediyne producers-apoproteins for the nine-membered enediynes and self-sacrifice proteins for the ten-membered enediyne calicheamicin. Here we show that: (1) tnmS1, tnmS2, and tnmS3 encode tiancimycin (TNM) resistance in its producer Streptomyces sp. CB03234, (2) tnmS1, tnmS2, and tnmS3 homologs are found in all anthraquinone-fused enediyne producers, (3) TnmS1, TnmS2, and TnmS3 share a similar ß barrel-like structure, bind TNMs with nanomolar KD values, and confer resistance by sequestration, and (4) TnmS1, TnmS2, and TnmS3 homologs are widespread in nature, including in the human microbiome. These findings unveil an unprecedented resistance mechanism for the enediynes. Mechanisms of self-resistance in producers serve as models to predict and combat future drug resistance in clinical settings. Enediyne-based chemotherapies should now consider the fact that the human microbiome harbors genes encoding enediyne resistance.


Assuntos
Antraquinonas/química , Antraquinonas/farmacologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Enedi-Inos/química , Enedi-Inos/farmacologia , Streptomyces/genética , Antraquinonas/metabolismo , Antibióticos Antineoplásicos/metabolismo , Farmacorresistência Bacteriana , Enedi-Inos/metabolismo , Genes Bacterianos , Humanos , Modelos Moleculares , Família Multigênica , Streptomyces/efeitos dos fármacos , Streptomyces/metabolismo
13.
PLoS One ; 13(4): e0196010, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29698518

RESUMO

A new enzymatic assay for the bacterial enzyme succinyl-diaminopimelate desuccinylase (DapE, E.C. 3.5.1.18) is described. This assay employs N6-methyl-N2-succinyl-L,L-diaminopimelic acid (N6-methyl-L,L-SDAP) as the substrate with ninhydrin used to detect cleavage of the amide bond of the modified substrate, wherein N6-methylation enables selective detection of the primary amine enzymatic product. Molecular modeling supported preparation of the mono-N6-methylated-L,L-SDAP as an alternate substrate for the assay, given binding in the active site of DapE predicted to be comparable to the endogenous substrate. The alternate substrate for the assay, N6-methyl-L,L-SDAP, was synthesized from the tert-butyl ester of Boc-L-glutamic acid employing a Horner-Wadsworth-Emmons olefination followed by an enantioselective reduction employing Rh(I)(COD)(S,S)-Et-DuPHOS as the chiral catalyst. Validation of the new ninhydrin assay was demonstrated with known inhibitors of DapE from Haemophilus influenza (HiDapE) including captopril (IC50 = 3.4 [± 0.2] µM, 3-mercaptobenzoic acid (IC50 = 21.8 [±2.2] µM, phenylboronic acid (IC50 = 316 [± 23.6] µM, and 2-thiopheneboronic acid (IC50 = 111 [± 16] µM. Based on these data, this assay is simple and robust, and should be amenable to high-throughput screening, which is an important step forward as it opens the door to medicinal chemistry efforts toward the discovery of DapE inhibitors that can function as a new class of antibiotics.


Assuntos
Amidoidrolases/metabolismo , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Ensaios Enzimáticos , Espectrofotometria , Amidoidrolases/genética , Antibacterianos/química , Proteínas de Bactérias/genética , Sítios de Ligação , Catálise , Domínio Catalítico , Complexos de Coordenação/química , Ácido Diaminopimélico/síntese química , Ácido Diaminopimélico/química , Ácido Diaminopimélico/metabolismo , Haemophilus influenzae/enzimologia , Cinética , Simulação de Acoplamento Molecular , Ninidrina/química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ródio/química , Estereoisomerismo , Especificidade por Substrato
14.
J Biol Chem ; 293(9): 3307-3320, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29301934

RESUMO

Host colonization by Gram-negative pathogens often involves delivery of bacterial proteins called "effectors" into the host cell. The pneumonia-causing pathogen Legionella pneumophila delivers more than 330 effectors into the host cell via its type IVB Dot/Icm secretion system. The collective functions of these proteins are the establishment of a replicative niche from which Legionella can recruit cellular materials to grow while evading lysosomal fusion inhibiting its growth. Using a combination of structural, biochemical, and in vivo approaches, we show that one of these translocated effector proteins, Ceg4, is a phosphotyrosine phosphatase harboring a haloacid dehalogenase-hydrolase domain. Ceg4 could dephosphorylate a broad range of phosphotyrosine-containing peptides in vitro and attenuated activation of MAPK-controlled pathways in both yeast and human cells. Our findings indicate that L. pneumophila's infectious program includes manipulation of phosphorylation cascades in key host pathways. The structural and functional features of the Ceg4 effector unraveled here provide first insight into its function as a phosphotyrosine phosphatase, paving the way to further studies into L. pneumophila pathogenicity.


Assuntos
Interações Hospedeiro-Patógeno , Legionella pneumophila/enzimologia , Sistema de Sinalização das MAP Quinases , Proteínas Tirosina Fosfatases/metabolismo , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Células HeLa , Humanos , Legionella pneumophila/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Biochemistry ; 57(5): 574-584, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29272107

RESUMO

The X-ray crystal structure of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase from Haemophilus influenzae (HiDapE) bound by the products of hydrolysis, succinic acid and l,l-DAP, was determined at 1.95 Å. Surprisingly, the structure bound to the products revealed that HiDapE undergoes a significant conformational change in which the catalytic domain rotates ∼50° and shifts ∼10.1 Å (as measured at the position of the Zn atoms) relative to the dimerization domain. This heretofore unobserved closed conformation revealed significant movements within the catalytic domain compared to that of wild-type HiDapE, which results in effectively closing off access to the dinuclear Zn(II) active site with the succinate carboxylate moiety bridging the dinculear Zn(II) cluster in a µ-1,3 fashion forming a bis(µ-carboxylato)dizinc(II) core with a Zn-Zn distance of 3.8 Å. Surprisingly, His194.B, which is located on the dimerization domain of the opposing chain ∼10.1 Å from the dinuclear Zn(II) active site, forms a hydrogen bond (2.9 Å) with the oxygen atom of succinic acid bound to Zn2, forming an oxyanion hole. As the closed structure forms upon substrate binding, the movement of His194.B by more than ∼10 Å is critical, based on site-directed mutagenesis data, for activation of the scissile carbonyl carbon of the substrate for nucleophilic attack by a hydroxide nucleophile. Employing the HiDapE product-bound structure as the starting point, a reverse engineering approach called product-based transition-state modeling provided structural models for each major catalytic step. These data provide insight into the catalytic reaction mechanism and also the future design of new, potent inhibitors of DapE enzymes.


Assuntos
Amidoidrolases/química , Proteínas de Bactérias/química , Haemophilus influenzae/enzimologia , Amidoidrolases/genética , Amidoidrolases/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Domínio Catalítico , Cristalografia por Raios X , Ácido Diaminopimélico/metabolismo , Dimerização , Haemophilus influenzae/genética , Ligação de Hidrogênio , Modelos Moleculares , Mutagênese Sítio-Dirigida , Neisseria meningitidis/enzimologia , Neisseria meningitidis/genética , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Rotação , Especificidade por Substrato , Ácido Succínico/metabolismo , Zinco/química
16.
ACS Chem Biol ; 13(1): 225-234, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29182315

RESUMO

Esterases receive special attention because of their wide distribution in biological systems and environments and their importance for physiology and chemical synthesis. The prediction of esterases' substrate promiscuity level from sequence data and the molecular reasons why certain such enzymes are more promiscuous than others remain to be elucidated. This limits the surveillance of the sequence space for esterases potentially leading to new versatile biocatalysts and new insights into their role in cellular function. Here, we performed an extensive analysis of the substrate spectra of 145 phylogenetically and environmentally diverse microbial esterases, when tested with 96 diverse esters. We determined the primary factors shaping their substrate range by analyzing substrate range patterns in combination with structural analysis and protein-ligand simulations. We found a structural parameter that helps rank (classify) the promiscuity level of esterases from sequence data at 94% accuracy. This parameter, the active site effective volume, exemplifies the topology of the catalytic environment by measuring the active site cavity volume corrected by the relative solvent accessible surface area (SASA) of the catalytic triad. Sequences encoding esterases with active site effective volumes (cavity volume/SASA) above a threshold show greater substrate spectra, which can be further extended in combination with phylogenetic data. This measure provides also a valuable tool for interrogating substrates capable of being converted. This measure, found to be transferred to phosphatases of the haloalkanoic acid dehalogenase superfamily and possibly other enzymatic systems, represents a powerful tool for low-cost bioprospecting for esterases with broad substrate ranges, in large scale sequence data sets.


Assuntos
Esterases/química , Esterases/metabolismo , Filogenia , Domínio Catalítico , Especificidade por Substrato
17.
Sci Rep ; 7(1): 7234, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28775283

RESUMO

Microorganisms use carboxylase enzymes to form new carbon-carbon bonds by introducing carbon dioxide gas (CO2) or its hydrated form, bicarbonate (HCO3-), into target molecules. Acetone carboxylases (ACs) catalyze the conversion of substrates acetone and HCO3- to form the product acetoacetate. Many bicarbonate-incorporating carboxylases rely on the organic cofactor biotin for the activation of bicarbonate. ACs contain metal ions but not organic cofactors, and use ATP to activate substrates through phosphorylation. How the enzyme coordinates these phosphorylation events and new C-C bond formation in the absence of biotin has remained a mystery since these enzymes were discovered. The first structural rationale for acetone carboxylation is presented here, focusing on the 360 kDa (αßγ)2 heterohexameric AC from Xanthobacter autotrophicus in the ligand-free, AMP-bound, and acetate coordinated states. These structures suggest successive steps in a catalytic cycle revealing that AC undergoes large conformational changes coupled to substrate activation by ATP to perform C-C bond ligation at a distant Mn center. These results illustrate a new chemical strategy for the conversion of CO2 into biomass, a process of great significance to the global carbon cycle.


Assuntos
Acetona/química , Trifosfato de Adenosina/química , Sítios de Ligação , Dióxido de Carbono/química , Carboxiliases/química , Carboxiliases/genética , Domínio Catalítico , Ligantes , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
18.
Biotechnol J ; 12(11)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28762640

RESUMO

Carboxylic acid reductases (CARs) selectively reduce carboxylic acids to aldehydes using ATP and NADPH as cofactors under mild conditions. Although CARs attracts significant interest, only a few enzymes have been characterized to date, whereas the vast majority of CARs have yet to be examined. Herein the authors report that 12 bacterial CARs reduces a broad range of bifunctional carboxylic acids containing oxo-, hydroxy-, amino-, or second carboxyl groups with several enzymes showing activity toward 4-hydroxybutanoic (4-HB) and adipic acids. These CARs exhibits significant reductase activity against substrates whose second functional group is separated from the carboxylate by at least three carbons with both carboxylate groups being reduced in dicarboxylic acids. Purified CARs supplemented with cofactor regenerating systems (for ATP and NADPH), an inorganic pyrophosphatase, and an aldo-keto reductase catalyzes a high conversion (50-76%) of 4-HB to 1,4-butanediol (1,4-BDO) and adipic acid to 1,6-hexanediol (1,6-HDO). Likewise, Escherichia coli strains expressing eight different CARs efficiently reduces 4-HB to 1,4-BDO with 50-95% conversion, whereas adipic acid is reduced to a mixture of 6-hydroxyhexanoic acid (6-HHA) and 1,6-HDO. Thus, our results illustrate the broad biochemical diversity of bacterial CARs and their compatibility with other enzymes for applications in biocatalysis.


Assuntos
Proteínas de Bactérias , Engenharia Metabólica/métodos , Oxirredutases , Trifosfato de Adenosina/metabolismo , Adipatos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácidos Carboxílicos/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Hidroxibutiratos , NADP/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo
19.
Front Microbiol ; 8: 1442, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824574

RESUMO

In most living organisms, the amino acid proline is synthesized starting from both glutamate and ornithine. In prokaryotes, in the absence of an ornithine cyclodeaminase that has been identified to date only in a small number of soil and plant bacteria, these pathways share the last step, the reduction of δ1-pyrroline-5-carboxylate (P5C) catalyzed by P5C reductase (EC 1.5.1.2). In several species, multiple forms of P5C reductase have been reported, possibly reflecting the dual function of proline. Aside from its common role as a building block of proteins, proline is indeed also involved in the cellular response to osmotic and oxidative stress conditions. Genome analysis of Bacillus subtilis identifies the presence of four genes (ProH, ProI, ProG, and ComER) that, based on bioinformatic and phylogenic studies, were defined as respectively coding a putative P5C reductase. Here we describe the cloning, heterologous expression, functional analysis and small-angle X-ray scattering studies of the four affinity-purified proteins. Results showed that two of them, namely ProI and ComER, lost their catalytic efficiency or underwent subfunctionalization. In the case of ComER, this could be likely explained by the loss of the ability to form a dimer, which has been previously shown to be an essential structural feature of the catalytically active P5C reductase. The properties of the two active enzymes are consistent with a constitutive role for ProG, and suggest that ProH expression may be beneficial to satisfy an increased need for proline.

20.
Int J Biol Macromol ; 104(Pt A): 584-596, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28629859

RESUMO

Thermotoga maritima is a hyperthermophilic bacterium but its genome encodes a number of archaeal proteins including S-adenosyl-L-homocysteine hydrolase (SAHase), which regulates cellular methylation reactions. The question of proper folding and activity of proteins of extremophilic origin is an intriguing problem. When expressed in E.coli and purified (as a homotetramer) at room temperature, the hyperthermophilic SAHase from T.maritima was inactive. ITC study indicated that the protein undergoes heat-induced conformational changes, and enzymatic activity assays demonstrated that these changes are required to attain enzymatic activity. To explain the mechanism of thermal activation, two crystal structures of the inactive form of T. maritima SAHase (iTmSAHase) were determined for an incomplete binary complex with the reduced cofactor (NADH), and in a mixture of binary complexes with NADH and with adenosine. In contrast to active SAHases, in iTmSAHase only two of the four subunits contain a bound cofactor, predominantly in its non-reactive, reduced state. Moreover, the closed-like conformation of the cofactor-containing subunits precludes substrate delivery to the active site. The two other subunits cannot be involved in the enzymatic reaction either; although they have an open-like conformation, they do not contain the cofactor, whose binding site may be occupied by an adenosine molecule. The results suggest that this enzyme, when expressed in mesophilic cells, is arrested in the activity-incompatible conformation revealed by its crystal structures.


Assuntos
Adenosil-Homocisteinase/genética , Adenosil-Homocisteinase/metabolismo , Escherichia coli/genética , Thermotoga maritima/enzimologia , Adenosil-Homocisteinase/química , Adenosil-Homocisteinase/isolamento & purificação , Sítios de Ligação , Coenzimas/metabolismo , Cristalografia por Raios X , Ativação Enzimática , Expressão Gênica , Modelos Moleculares , NAD/metabolismo , Multimerização Proteica , Estrutura Quaternária de Proteína , Temperatura , Thermotoga maritima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA